Welcome to alevelscience.help
Choose a course to get started. Switch anytime from the selector at the top-left.
⚛️ Physics
Motion, forces, energy, electricity and more — with interactive labs and quizzes.
🧬 Biology
Cells, enzymes and systems — begin with microscopy and enzyme kinetics.
⚗️ Chemistry
Atoms, moles and reactions — practice stoichiometry and gas law problems.
Welcome
Explore Cambridge A Level Physics (9702) with hands‑on visualizations. This page covers the following chapters: Physical Quantities & Measurement, Kinematics, Dynamics, and Forces, Density & Pressure. Adjust parameters, run animations, and check the maths live.
What you’ll practice
- SI units, vectors, significant figures, uncertainties
- 1D motion & projectile motion, graphs
- Forces, Newton’s laws, friction, collisions
How to use
- Use sliders/inputs then press ▶ to animate.
- Hover tooltips for notes. Use R to reset many widgets.
- Print to PDF with the top‑right button.
Assumptions
- Flat Earth (local lab scale), constant g.
- No air resistance unless stated.
- SI units throughout (unless noted).
Chapter 1 — Physical Quantities & Measurement
Equations (Measurement & Vectors)
Key ideas: SI base units, derived units, scalar vs vector, significant figures, and estimating & propagating uncertainty.
1A · Significant‑Figure Trainer
Round to a chosen number of significant figures. Great for tidy physics answers.
Enter your rounded value below:
1B · Uncertainty Propagator
Combine measurement results (x \u00b1 Δx) using standard rules. Choose operation and see absolute & percentage uncertainty.
Rules used
- Add/Subtract: absolute uncertainties add: ΔR = ΔA + ΔB.
- Multiply/Divide: percentage uncertainties add: (ΔR/R) = (ΔA/A) + (ΔB/B).
- Powers: (ΔR/R) = |n| (ΔA/A) for R=A^n.
1C · Vector Playground
Drag the arrow tips to change vectors \( \\vec a \) and \( \\vec b \). The resultant \( \\vec r = \\vec a + \\vec b \) updates live.
Chapter 1 · Quick Quiz
Chapter 2 — Kinematics
Describe motion with displacement s, velocity v, acceleration a, and time t. Constant‑acceleration (SUVAT) equations:
v = u + at · s = ut + ½at² · v² = u² + 2as · s = ½(u+v)t
2A · 1D Motion Lab (SUVAT)
Analytic s(t)=ut+½at², v(t)=u+at compared with numerical integration.
2B · Projectile Motion (No Air Resistance)
Formulae: T = \n 2 v₀ sinθ / g, R = v₀² sin 2θ / g, H = v₀² sin²θ / (2g). Max range when θ=45° (flat ground).
Chapter 2 · Quick Quiz
Chapter 3 — Dynamics
Relate forces to motion. Newton’s laws, weight, normal, friction, and momentum.
3A · Block with Friction (Newton II)
If |F| ≤ μsN the block doesn’t move (static friction matches F). Once sliding, friction = μkN opposes motion.
3B · 1D Collisions (Coefficient of Restitution e)
Momentum is conserved in all isolated collisions. Kinetic energy is conserved only if e=1 (perfectly elastic).
Chapter 3 · Quick Quiz
Chapter 4 — Forces, Density & Pressure
\( p = \dfrac{F}{A} \), \( \rho = \dfrac{m}{V} \)
Key ideas: equilibrium (ΣF=0, Στ=0), turning forces (torque), pressure in fluids (\(p=\rho g h\)), and Archimedes’ principle (buoyant force equals weight of displaced fluid).
4A · Density Lab
Enter mass and volume to compute density in both SI and cgs units.
Notes
- 1 m³ = 10⁶ cm³; 1 kg = 1000 g.
- Water at room temperature ≈ 1000 kg/m³ (1 g/cm³). If your object’s density is less than water, it will float.
4B · Pressure in Fluids
Gauge updates with depth. \(p = p_0 + \rho g h\). Gauge pressure is \(p - p_0\).
At a given depth in a static fluid, pressure depends only on \(\rho\), \(g\), and \(h\) — not the container shape.
4C · Lever Balancer (Turning Forces)
Drag the weights along the beam. Balance when Στ about the pivot is zero.
Torque \(\tau = r F\). With weights, \(F = m g\). Balance when \(m_1 g r_1 = m_2 g r_2\).
Chapter 4 · Quick Quiz
Formulae & Quick Checks
Vectors
Magnitude: \( |\vec r| = \sqrt{x^{2}+y^{2}} \) · Direction: \( \theta = \operatorname{atan2}(y,\,x) \)
Addition: \( \vec r = \vec a + \vec b \)
Uncertainties
Add/Subtract: absolute add → \( \Delta z \approx \Delta x + \Delta y \)
× / ÷: % add → \( \dfrac{\Delta z}{z} \approx \dfrac{\Delta x}{x} + \dfrac{\Delta y}{y} \)
Powers: \( \dfrac{\Delta (x^{n})}{x^{n}} \approx |n|\dfrac{\Delta x}{x} \)
Round \( \Delta \) to 1–2 s.f.; match value to \( \Delta \)’s decimal places.
Dynamics
Newton II: \( \sum F = m a \) · Momentum: \( p = m\,v \) · Work: \( W = F\,s \)
Static friction: \( F_f \le \mu_s N \) · Kinetic: \( F_f = \mu_k N \)
SUVAT (Constant Acceleration)
Use a consistent sign convention. Variables: \(s\) displacement, \(u\) initial speed, \(v\) final speed, \(a\) acceleration (constant), \(t\) time.
\( v = u + a t \)
\( s = u t + \tfrac{1}{2} a t^{2} \)
\( v^{2} = u^{2} + 2 a s \)
\( s = \tfrac{(u+v)}{2}\, t \)
\( s = v t - \tfrac{1}{2} a t^{2} \)
\( t = \dfrac{v-u}{a} \)
\( a = \dfrac{v-u}{t} \)
\( u = v - a t \)
\( s = \dfrac{v^{2}-u^{2}}{2a} \)
From \( s = u t + \tfrac{1}{2} a t^{2} \):\[ t = \frac{-u \pm \sqrt{\,u^{2}+2 a s\,}}{a} \quad (\text{Pick valid root}) \]
Tip: if \(a=0\), SUVAT reduces to uniform motion: \(s=ut\) and \(v=u\).
Energy & Power
Kinetic: \( E_k = \tfrac{1}{2} m v^{2} \)
Gravitational: \( E_p = m g h \)
Work: \( W = F s \cos\theta \)
Power: \( P = \dfrac{W}{t} = F\,v \)
Efficiency: \( \eta = \dfrac{P_{out}}{P_{in}} \)
Momentum & Impulse
Momentum: \( p = m\,v \)
Impulse: \( J = F\,\Delta t = \Delta p \)
Conservation: \( \sum p_{\text{before}} = \sum p_{\text{after}} \)
Restitution: \( e = \dfrac{v'_2 - v'_1}{v_1 - v_2} \)
Circular Motion
Centripetal: \( a_c = \dfrac{v^{2}}{r} = \omega^{2} r \)
Force: \( F_c = m \dfrac{v^{2}}{r} \)
Link: \( v = \omega r,\; T = \dfrac{2\pi}{\omega} = \dfrac{2\pi r}{v} \)
Simple Harmonic Motion
Definition: \( a = -\omega^{2} x \)
Displacement: \( x = A\cos(\omega t + \phi) \)
Speed: \( v = \pm\,\omega\sqrt{A^{2}-x^{2}} \)
Spring: \( T = 2\pi\sqrt{\tfrac{m}{k}} \)
Pendulum: \( T = 2\pi\sqrt{\tfrac{\ell}{g}} \)
Waves
Wave speed: \( v = f\lambda \)
Intensity: \( I \propto A^{2} \)
Young: \( d\sin\theta = m\lambda \) maxima
Grating: \( n\lambda = d\sin\theta \)
Phase: \( \phi = \dfrac{2\pi \Delta s}{\lambda} \)
Optics
Snell: \( n_1\sin\theta_1 = n_2\sin\theta_2 \)
Critical: \( \sin\theta_c = \dfrac{n_2}{n_1} \) (\(n_1>n_2\))
Thin lens: \( \dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v} \)
Magnification: \( m = \dfrac{v}{u} = \dfrac{h'}{h} \)
Electricity
Ohm: \( V = I R \)
Power: \( P = VI = I^{2}R = \dfrac{V^{2}}{R} \)
Resistivity: \( R = \rho \dfrac{L}{A} \)
Series: \( R_{eq} = R_1+R_2+\dots \)
Parallel: \( \dfrac{1}{R_{eq}} = \sum \dfrac{1}{R_i} \)
EMF: \( \varepsilon = V + I r \)
Capacitors
Definition: \( C = \dfrac{Q}{V} \)
Series: \( \dfrac{1}{C_{eq}} = \sum \dfrac{1}{C_i} \)
Parallel: \( C_{eq} = C_1+C_2+\dots \)
Energy: \( U = \tfrac{1}{2} C V^{2} = \tfrac{1}{2} QV = \dfrac{Q^{2}}{2C} \)
RC: \( V(t)=V_0\!(1-e^{-t/RC}),\; V_{dis}(t)=V_0 e^{-t/RC} \)
Fields & Induction
Gravity: \( g=\dfrac{GM}{r^{2}},\; V_g=-\dfrac{GM}{r} \)
Electric: \( E=\dfrac{kQ}{r^{2}},\; V_e=\dfrac{kQ}{r},\; F=q\,E \)
Magnetic: \( F=B I L\,\sin\theta= B q v\,\sin\theta \)
Radius: \( r=\dfrac{m v}{|q| B} \)
Flux/EMF: \( \Phi=BA\cos\theta,\; |\mathcal{E}|=N\,\dfrac{d\Phi}{dt} \)
Thermal
Ideal gas: \( pV=nRT = NkT \)
Internal energy: monoatomic \( U=\tfrac{3}{2}nRT \)
Heating: \( Q=mc\,\Delta T \), Latent: \( Q=mL \)
First law: \( \Delta U = Q - W \)
Quantum
Photon: \( E=hf=\dfrac{hc}{\lambda} \)
Photoelectric: \( hf = \phi + K_{\max} \)
de Broglie: \( \lambda = \dfrac{h}{p} = \dfrac{h}{mv} \)
Nuclear
Decay: \( N = N_0 e^{-\lambda t} \), \( A=\lambda N \)
Half-life: \( T_{1/2} = \dfrac{\ln 2}{\lambda} \)
Mass–energy: \( E = \Delta m\,c^{2} \)
Biology · Level 1 Overview
Start with cell structure, microscopy and enzyme activity. Explore concise interactives and check your understanding with a quick quiz.
1 — Cells & Microscopy
Relate image size, actual size and magnification: M = I / A. Enter any two to find the third.
1A · Magnification Calculator
Use consistent units; convert μm ↔ mm as needed (1 mm = 1000 μm).
1B · Enzyme Rate Explorer
See how temperature and pH affect a typical enzyme with optima near 37°C and pH 7.
Model: rate ≈ exp(-((T-37)²)/(2·10²)) × exp(-((pH-7)²)/(2·1.5²)).
Biology L1 · Quick Quiz
Biology · Formulae & Quick Checks
Microscopy
Magnification: \( M = \dfrac{I}{A} \)
Scale bar: \( \text{size} = \dfrac{\text{measured}}{\text{scale}} \)
Resolution limit ≈ \( \tfrac{\lambda}{2} \) (light)
Transport & Exchange
Fick: \( \text{rate} \propto \dfrac{A\,\Delta C}{d} \)
Cardiac output: \( \text{CO} = \text{SV} \times \text{HR} \)
Ventilation rate: \( f = \dfrac{\Delta V}{\Delta t} \)
Water Potential
Total: \( \Psi = \Psi_s + \Psi_p \)
Solute: \( \Psi_s = -i C R T \) (approx.)
Osmosis to lower \(\Psi\)
Population & Diversity
Simpson: \( D = 1 - \sum \left(\dfrac{n}{N}\right)^2 \)
Mark–release–recapture: \( \hat N = \dfrac{n_1 n_2}{m} \)
Enzymes
Rate: \( v = \dfrac{\Delta P}{\Delta t} \)
Michaelis–Menten (qual.): \( v = \dfrac{V_{max}[S]}{K_M + [S]} \)
Q10: rate change per 10°C
Statistics (Core)
Mean: \( \bar x = \dfrac{\sum x}{n} \)
SD: \( s = \sqrt{\dfrac{\sum (x-\bar x)^2}{n-1}} \)
t‑test (two‑sample): \( t = \dfrac{\bar x_1-\bar x_2}{s_p\sqrt{\tfrac{1}{n_1}+\tfrac{1}{n_2}}} \)
2 — Biological Molecules
Explore core tests for biological molecules and estimate solute potential using the van ’t Hoff relation.
2A · Food Test Planner
Select a sample to see the appropriate qualitative tests and expected positive results.
Follow safety and proper heating steps for Benedict’s/biuret/emulsion tests.
2B · Solute Potential (Ψs)
Compute solute potential using \( \Psi_s = - i C R T \). C is molarity (mol·L⁻¹), T in kelvin.
Outputs both Pa and MPa. Approximation assumes dilute solution.
Biology L2 · Quick Quiz
Chemistry · Level 1 Overview
Build core skills in atomic structure and stoichiometry. Practice with calculators and a quick quiz.
1 — Foundations & Stoichiometry
1A · Molar Mass Calculator
Enter a simple chemical formula (e.g., H2O, NaCl, C6H12O6).
Supports common elements and parentheses at one level (e.g., Ca(OH)2).
1B · Ideal Gas Explorer
PV = nRT (R = 8.314 J·mol⁻¹·K⁻¹). Choose a variable to solve.
Chemistry L1 · Quick Quiz
Chemistry · Formulae & Quick Checks
Amounts & Solutions
Moles: \( n = \dfrac{m}{M_r} \)
Concentration: \( c = \dfrac{n}{V} \)
Dilution: \( c_1 V_1 = c_2 V_2 \)
Gases & Energy
Ideal gas: \( pV = nRT \)
Heat: \( q = mc\,\Delta T \)
Enthalpy change per mol: \( \Delta H = -\dfrac{q}{n} \)
Stoichiometry
% yield: \( \dfrac{\text{actual}}{\text{theoretical}} \times 100\% \)
Atom economy: \( \dfrac{\text{Mr desired}}{\sum \text{Mr products}} \times 100\% \)
Acids & pH
\( \mathrm{pH} = -\log_{10}[\mathrm{H}^+] \)
\( K_a = \dfrac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{HA}]} \)
\( K_w = [\mathrm{H}^+][\mathrm{OH}^-] = 1.0\times10^{-14} \)
Equilibria
\( K_c = \dfrac{\prod [\text{products}]^{\nu}}{\prod [\text{reactants}]^{\nu}} \)
Reaction quotient \(Q\) same form as \(K\)
Le Châtelier principle (qual.)
Kinetics
Rate law: \( r = k\,[A]^m[B]^n \)
Arrhenius: \( k = A e^{-E_a/(RT)} \)
Half‑life (1st order): \( t_{1/2} = \dfrac{\ln 2}{k} \)
Electrochemistry
\( E_{cell}^{\circ} = E_{red}^{\circ} - E_{ox}^{\circ} \)
\( \Delta G^{\circ} = -n F E_{cell}^{\circ} \)
Thermodynamics
\( \Delta G = \Delta H - T\,\Delta S \)
\( K \approx e^{-\Delta G^{\circ}/(RT)} \)
Titrations
For monoprotic/1:1: \( c_a V_a = c_b V_b \)
Use stoichiometric ratios when not 1:1
2 — Atomic Structure
Build electron configurations and calculate relative atomic mass from isotopic abundance.
2A · Electron Configuration
Enter atomic number \(Z\) (≤ 36). Uses aufbau with Cr/Cu exceptions.
Outputs spectroscopic and noble‑gas notation with valence electron count.
2B · Isotopic Abundance → Ar
Enter up to three isotopes (mass and %). Leaves can be zero.
Ar = Σ(mᵢ·aᵢ)/Σ(aᵢ). Percentages need not sum to 100.